

2

Within the last few years, consumer-level computers have reached levels of processing power that at last
enable the real-time capability of the phase vocoder to be realized. It remains important to implement the
phase vocoder as efficiently as possible, but this capability raises new issues relating to the design and
implementation of streaming audio systems in general. Where a series of transformations is to be applied
to a sound, it is clearly inefficient to chain complete phase vocoders in series, where the obvious solution
is to apply the transformations themselves in series, inside a single analysis-resynthesis framework. The
fact that this frequency-domain processing can now easily be done in real-time suggests that such a
framework is no longer speculative, and consideration can be given to practical questions of design,
implementation, and, in particular, integration with existing framework paradigms.

2. Implementation of a real-time Phase Vocoder

2.1 Core analysis parameters.

As noted above, the analysis and resynthesis performed by the phase vocoder is based on the use of the

http://www.fftw.org

5

formats, enabling use in a variety of contexts. Full details of the specification, together with downloadable
command-line implementations for the Windows and Linux platforms, have been published on the
Internet (Dobson 2000b). PVOC_EX is intended as a replacement for CDP’s current file formats, and
support for it is also being added to Csound. Prototype programs have been developed to convert the
Csound and PVC formats to PVOC_EX. By being based on a streaming audio format, it can also be
regarded as the specification for analysis data streamed through a plugin framework, as described below.

2.3.2 Real-time considerations.

A key element of the overlap-add resynthesis technique is the maintenance of a running phase,
incrementing as each frame is processed:

for(i=0, i0=syn, i1=syn+1; i<= NO2; i++, i0+=2, i1+=2){
mag = *i0;
oldOutPhase[i] += *i1 - ((float) i * F);
phase = oldOutPhase[i] * TwoPioverR;
*i0 = (float)((double)mag * cos((double)phase));
*i1 = (float)((double)mag * sin((double)phase));

}

[CARL: pvoc.c]

This technique assumes the ability of the standard C sin and cos functions to return a correct result for an
input phase value outside the nominal range. For the short sounds typically used with disk-based
processing, this assumption is reasonable. However, in a prototype implementation using a SHARC dsp
chip, without the benefit of double-precision processing, degradation of the audio was easily apparent after
as little as ten minutes. Clearly, for stability over long periods, the phase calculation must be refined to
keep it within bounds. The obvious, if costly, solution is to apply normalization to the phase value each
time:

oldOutPhase[i] += *i1 - ((float) i * F);
oldOutPhase[i] = fmod(oldOutPhase[i], TWOPI)

As, even in the SHARC implementation, a small amount of range error in phase can be tolerated, the
otherwise unacceptable extra processing burden incurred by this solution can be mitigated by applying the
correction incrementally by analysis bin over successive analysis frames. This entails a change to ensure
both that the smallest values are accumulated, and that both corrected and uncorrected values are valid:

float angledif, phase;
angledif = TwoPioverR * (*i1 - ((float) i * F));
phase = *(oldOutPhase + i) +angledif;
if(i== bin_index)

phase = (float) fmod(phase,TWOPI);
*(oldOutPhase + i) = phase;

This leads to each bin receiving a correction at the rate:

(overlap * (N/2)+1) / SR secs.

Thus, at SR = 44100, with N = 1024 and overlap = 128, each bin is corrected every 1.489 seconds, well
within the safe range.

With this change, and a with few other minor adjustments to the CARL code, the prototype plugins have
been run without audio degradation for over eight hours, with an overall penalty in processing time of a
modest 3 percent. This is increased to around ten percent, (referenced to Table 1) firstly by the overhead
of the conversion to C++, and secondly by the need to support time-domain sample blocks of arbitrary
size, currently requiring a method call (albeit inline) every sample.

6

The primary host application used for testing the VST plugin implementations was the shareware
program AudioMulch, by Ross Bencina (http:/www.audiomulch.com). This provides an explicit
percentage report, as plugins are running. The availability of low-load synthesis sources, combined with a
static display, enables plugins to be tested with a minimum of overhead. Table 2 lists some representative
measurements for monophonic processing at the 44100 sample rate, using the same platform as given in
Table 1. It can be seen that for a given FFT size, CPU load is almost exactly proportionate to the overlap
size, indicating that the phase vocoder can be used in this way with a high level of predictability.

2.3.3 Future prospects for the phase vocoder.

The examples described above have been realized on what even today can be considered a low-powered
workstation, and rely on a sizeable latency, through the use of the overlap-add technique. However, it is
most important to note that this is not the only way to implement a phase vocoder, and that this latency is

(http://www.audiomulch.com

7

otherwise all connected processing nodes need to receive the dimension of the signal as a parameter,
either directly from the host, or, more naturally, from the source node. This is the principle underlying the
DirectShow filter graph (where ‘filter’ is Microsoft’s generic name for any source, transform or sink
node), in which format negotiation is handled bi-directionally by the pins which connect filters to each
other. In most cases the primary determinant of format acceptance is the rendering hardware (it is
especially annoying when a plugin refuses a format that the hardware can accept), while transform filters
can be designed to accept (within reason) any set number of dimensions, at least so long as each
dimension is of the same type. This requirement cannot be presumed to be met in all cases, and would
need to be defined as part of the framework specification. The SDIF format (Wright, Chaudhary, Freed,
Khoury and Wessel 1999), though not strictly speaking a

http://www.bath.ac.uk/~masjpf/NCD/researchdev/pvocex/pvocex.html
http://www.bath.ac.uk/~masjpf/NCD/researchdev/wave-ex/bformat.html

9

Endrich, A. 1997. Composer’s Desktop Project - a musical imperative. Organised Sound 2(1): 29-33.
Gerzon, M. A. 1972. Periphony: with-height sound reproduction. Journal of the Audio Engineering
Society 21(1): 2-10.
Jaffe, D.A. 1987. Spectrum analysis tutorial, part 1: the discrete Fourier transform. Computer Music
Journal 11(2): 9-24.
Malham, D. and Myatt, A. 1995. 3-d sound spatialization using ambisonic techniques. Computer Music
Journal 19(4): 58-70.
McAulay, R.J. and Quatieri, T.F. 1986. Speech analysis/synthesis based on a sinusoidal representation.
IEEE Transactions on Acoustics, Speech, and Signal Processing 34(4): 744-754.
Moore, F.R. 1990. Elements of computer music. New Jersey: Prentice Hall.
Moorer, J. A. 2000. Audio in the new Millennium. Journal of the Audio Engineering Society 48(5): 490-
498.
Roads, C. 1996. The computer music tutorial. Cambridge, MA: MIT Press.
Serra, X. and Smith, J.O. 1990. Spectral modelljng synthesis: A sound analysis/synthesis system based on
a deterministic plus stochastic decomposition. Computer Music Journal 14(4): 12-24.
Vercoe, B. 2000. Understanding Csound’s spectral data types. In R. Boulanger (ed.) The Csound Book.
Cambridge, MA: MIT Press.
Wishart, T. 1988. The composition of Vox-5. Computer Music Journal 12(4): 21-27.
Wishart, T. 1994. Audible Design. York: Orpheus the Pantomime.
Wright, M., Chaudhary, A., Freed, A., Khoury,S., and Wessel, D. 1999. Audio applications of the Sound
Description Interchange Format. Proceedings of the 107th Convention, Audio Engineering Society.

Table 1.

Program Implementation Execution time (seconds)
(average of ten runs)

plainpv (Moore/PVC) 19.05

	return:

