
HACKING SOUND IN CONTEXT

Alex McLean
alex@state51.co.uk
state51, Rhoda Street, London, E2 7EF

Without software, a computer is like a stone. Consider a program that generates
organised sound - what could it be but a music score, composed by humans? I suggest
that ultimately, software can be nothing but human expression.

This paper is an exploration of the relationship between the programmer, the
programming environment, and computer music applications.

Meaning of "Hack"
"Non-technical people seem to be largely unaware that the word "technician" is an insult.
Like the term "lower class," it generally refers to someone else. What "technician"
usually means is somebody whose work is less creative than your own."
Ted Nelson, 1974

The term "Hacker" is not so much misunderstood as over-appropriated. The first
hackers were the members of a particular dorky culture of model train enthusiasts and
phone phreakers at Massachusetts Institute of Technology. Later these young geeks
found a computer, and made history by having a lot of fun with them, spending many
hours at a time exploring computational possibilities. From then on, the label "hacker"
stuck on those who revelled in the resultant new, wild realms of technological creativity.

Unfortunately journalists have generally ignored all the subtle nuances around the word,
and instead use it to describe a computer criminal. But still, within many sections of
geek culture, a "hacker" simply means a wildly talented programmer. That's the
meaning I use, along with "hacking" to mean creative, individualistic programming, and
"hack" to mean a creative (or weird) computer program.

Feel of Languages
"I would recommend that every student of music go dancing at least once a week. And
dance. Please, really dance: three of four hours a week."
Karlheinz Stockhausen, 1989

In his book "The Aesthetics of Computing," David Gelernter enthuses at great length
about "quicksort," a fast, elegant way of sorting data. He finishes his long and rather
intense analysis with a jubilant, italicised line:

"Quicksort is powerful and simple: a beautiful algorithm."

I wonder how he would have felt if he had stumbled across the London "Perl Mongers"

pub meeting one dark London evening. The scene was set by drunken programmers
fuelled with real ale, stumbling across the insane idea of acting out a human, sonified
bubblesort. Bar staff could only stand and stare as grown men and women stood in an
unruly semi-circle, singing instructions "Compare!", "Swap!" or "Stay!" at each other,
choosing musical pitch reflecting their comparative heights.

Well, it was a strange sight, and a stranger sound. But perhaps it shouldn't be surprising
to see programmers dancing about to algorithms. Consider this mailing list post, part of
a discussion about the 'feel' of computer languages.

"I've always pictured programming as a dance of sorts, very slow and each gesture
receives a great deal of attention, so that a limb or a step would not stray from a
particular path. Loops look like pirouettes to me, I/O feels like delicate gestures with
one's hands, no, just the fingertips drawing patterns in the air. Conditionals and cases
are tumbles and jumps (into the air, that is). Arithmetic is kind of hazy, controlled slides
with no traction (think 'slick moves'), things being pushed and brushed aside."

A program in execution is a program in motion. Control flows around the program,
taking data with it. Data flows into the program, and is breathed out again. A hacker
staring intently into her screen is probably turning somersaults in her mind.

Free Software
"Computers're bringing about a situation that's like the invention of harmony. Sub-
routines are like chords. No one would think of keeping a chord to himself. You'd give it
to anyone who wanted it. You'd welcome alterations of it. Sub-routines are altered by a
single punch. We're getting music made by man himself: not just one man." - John John
Cage, 1969

As a programmer who writes code to compose music, I was heartened to find this quote.
Back then, Cage saw computer language as an expressive tool, and was excited about
the possibilities that code could bring to music. But there is an implication that I'm not
happy with; that to program is to lose a sense of individuality.

Every programmer I know has a very different programming style. This is especially true
of very rich languages such as Perl, where often programmers will have such different
approaches to the language that they will be unable to understand each other's code.

"Many computer scientists have fallen into the trap of trying to define languages like
George Orwell's Newspeak, in which it is impossible to think bad thoughts. What they
end up doing is killing the creativity of programming."
Larry Wall (the creator of the Perl programming language), 1997

Programming has changed since 1969. Thanks to the wider choice of languages and
interfaces, programmers now make all the rules, making far more decisions about style
and structure. Coding has become an individualistic past-time.

On a different tack, for the last couple of decades many people have kept sub-routines

Flower
"When I started working with computers I had to learn to visualize what was going on in
the machine. ... Curators and critics that look at net art have to go through this process
as well, but they may not realize it."
Mark Napier, 2000

When I create a program it is in much the same way as I might create a piece of music
in a sequencer. I have an abstract idea, concentrate on the most tangible part and place
it in the computer as code. Then, I form more parts around it until a coherent whole
appears. Some parts may get deleted, but have made their mark on the parts that
formed around it.

After hearing "Speedy J" perform some gut-wrenching techno, I found myself thinking
about movement in music. Thinking in the abstract, I imagined a network of loops, with
things moving around making sounds. After a few hours I came up with what I now
describe as insects moving around a flower, with several sound triggers on each petal.
This was an arbitrary description as it had no visualisation or indeed any interface at all
beyond three inputs - intensity, complexity and disorder.

It starts off with a circle. Increase the intensity and insects begin to travel around it,
decrease and they're killed off one by one. Increase the complexity and petals get

Bibliography and recommended reading

1.Music and the Mind, Storr, Harper Collins, 1992

2.The Sound of Painting, Maur, 1999

3.John Cage, Writer - Selected Texts, Ed. Kostelanetz, MIT Press, 1993

4.The Computational Beauty of Nature, Flake, 1998
http://mitpress.mit.edu/books/FLAOH/cbnhtml/

5.Ocean of Sound, Toop, Serpents Tail, 1995

6.How I drew one of my pictures, Ward, 1999
http://www.generative.net/papers/autoshop/index.html

7.Computer Lib/Dream Machines, Ted Nelson, 1974
http://xanadu.com.au/ted/

8.The New Hacker's Dictionary - second edition, Ed. Raymond, MIT Press, 1994
http://tuxedo.org/jargon/

9.Talking Music: Conversations with John Cage, Philip Glass, Laurie Anderson, and Five
Generations of American Experimental Composers, Duckworth, Schirmer Press,
1995

10.Aesthetics of Programming: Interview with Mark Napier, Brogger, "ON OFF", 2000
http://www.afsnitp.dk/onoff/Projects/napierinterview.html

http://mitpress.mit.edu/books/FLAOH/cbnhtml/
http://www.generative.net/papers/autoshop/index.html
http://xanadu.com.au/ted/
http://tuxedo.org/jargon/
http://www.afsnitp.dk/onoff/Projects/napierinterview.html

	return:

