
FrameWorks : a structural composition tool

Richard Polfreman
Music Department

Faculty of Engineering and Information Sciences,
University of Hertfordshire, College Lane, Hatfield, Herts. AL10 9AB.

r.p.polfreman@herts.ac.uk

Abstract

FrameWorks is a new software tool that has been developed as a proof of concept for novel ideas relating to user-
interface approaches for music composition systems. FrameWorks has been developed on the basis of HCI (Human
Computer Interaction) research investigating the processes of music composition and aims to support more top-down
approaches to the task which are poorly supported by extant systems. This paper briefly covers the background to the
project, describes the main features of the FrameWorks concept, presents the current user-interface and discusses fu-
ture developments of the system. Some simple musical examples are given to illustrate the system's potential.

Keywords: User-Interface Design, Music Composition Systems, Midi Sequencers, Java Applications

1 Introduction

FrameWorks has been developed as a proof of concept for emerging ideas relating to handling musical structure
effectively within a software composition environment. These ideas have been derived from Task Analysis work
studying the process of music composition through observations, interviews, retrospective protocols and
questionnaires involving a variety of composers working on compositions for acoustic, electronic and mixed media.
The resulting Generic Task Model has been used in the development of Modalys-ER (Polfreman, 1999), a graphical
physical modelling synthesis program in collaboration with IRCAM, and more recently in the development of
FrameWorks (Polfreman and Loomes, 2001). While the GTM is not yet fully complete and further research is
necessary to further formalise the description and increase confidence in its generality, we found the model
particularly useful in setting out the structures and concepts to be used in interactive software development.

FrameWorks is a small composition environment based on three main levels: Workbench, Framework and Sequence.
The Workbench is an area where the composer can organise musical and non-musical materials that are important to
them for a particular composition, e.g. text, diagrams, and musical fragments. The Framework is where an individual
composition is constructed using components that can be connected via relations. Components are flexible containers
of musical material, while relations indicate dynamically maintained musical transformations. The Sequence level
displays the resulting material from the framework without indicating directly any the structural elements, similar to
standard sequencing software. FrameWorks in its current form uses MIDI, while the central concept is generic and
may be applied to any time based (musical) information, e.g. raw sound, synthesis control signals, DSP parameters,
etc.

A preview release, FrameWorks_1.0pr, has been developed using Java, is freely available (from April 2001), runs on
Mac OS, Windows and Linux in the near future. All descriptions of the software here relate to this version.

2 Software Aims

In developing FrameWorks we had some key aims in terms of practical concerns and user features to be provided.

2.1 Cross-platform

Given the uncertainty of operating systems and their futures, in addition to the disparate use of computer platforms by
composers (Mac OS and Windows are typical, but Linux, IRIX and other Unix-like systems are also used for music
applications), we wanted to develop a cross platform implementation that would not be OS dependent. Java provides

such an environment and is particularly useful for Graphical User Interface development since this part tends to be
very OS specific with other development tools. Unfortunately at the start of development there was no effective
sound support for Java and so we adopted Grame’s Midishare which is freely available for Mac OS, Windows and
Linux. Midishare provides a Java interface enabling Java programs to access the Midi system. While this limits the
cross-platform nature of the system somewhat, it still allowed us to develop a multi-platform application. Since that
time a Java Sound API has been developed, as part of Java 2, which provides some Midi and audio support within
Java.

2.2 ‘Viscosity’, ‘Premature Commitment’

These are two of Green’s ‘Cognitive Dimensions of Notations’ (Green, 1989) which are used in assessing the
usability of notation systems. Viscosity refers to the resistance to change in a notation, i.e. how easily can local
changes be made and at what cost. Premature commitment refers to when users have to make decisions too early.
Low viscosity helps this since early decisions can be changed more easily later on. There are other cognitive
dimensions but we have focussed on these two with Frameworks.

In a recent paper (Blackwell, Green and Nunn, 2000), Green and others examined some musical systems and noted
that viscosity and premature commitment were low in software sequencers. Viscosity was low since it is very easy to
make a local change, e.g. by dragging or inserting notes. Premature commitment was low since work could begin at
any point in the piece and be carried out in any order. However, we argue that this doesn’t take into properly into
account the nature of musical works and looks purely at the notation itself and not at its application.

In many musical works there is an idea of ‘theme’ of some sort – a musical phrase or pattern that occurs several times
in different places either identically or transformed in some way (such as a transposed version). There are also
dependencies across parallel events such that chords, melodies and bass parts for example have to maintain some
musical relationship that the composer has in mind. Thus, changes made locally to an event or series of events can
require many other changes to made in order to preserve the integrity of the composition and so there can be a high
cost involved and therefore a high level of viscosity.

Premature commitment can also be seen as high since if a composer is working on a thematic piece, they have to
commit to a theme early on in order to avoid the high cost of changes to the thematic material. There is also limited
support for defining higher level music structures and so typically the composer must commit to some material and
develop from that material rather than being able to set out some musical structure and then begin to work on the
underlying material.

FrameWorks begins to solve some of these problems, although in its current form in only limited ways. In future
developments we hope to tackle these issues more effectively.

2.3 Algorithms, Maths and Programming

One solution to the above problems is to use an algorithmic composition approach. This involves defining a
composition in terms of mathematical processes, usually involving some form of programming environment. An
example system is IRCAM’s Open Music (Assayag, 1995), which is a visual programming environment based on
Lisp with built in libraries for handling musical material and manipulation. The idea here is that musical events can
be generated and/or manipulated using mathematical tools and so complex relationships can be set up and maintained
with changes possible at many different levels within a piece. While this is a very powerful approach it requires the
composer to learn sophisticated mathematical and programming ideas in order to realise their musical ideas. As such
these systems perhaps only cater for a limited number of composers. With FrameWorks we aim to provide methods
of expressing and maintaining musical relationships, but without recourse to mathematical expressions and hope to
deliver a system that is more usable by a wide range of composers without the technical expertise of computer
programmers.

2.4 Products of Research

Our task analysis work indicated that research was an important part of the composition process and that this included
many topics both within music related fields and in others. While developing a system that supported all kinds of
research within it would be difficult (some kind of www search and collation system would be possible, but this is

better supported by existing web browsers), we wanted to provide in FrameWorks some area where the products of a
research phase could be integrated into the composition environment. So while such materials may not be musical or
incorporated directly into to a composition, they could be presented with and saved along side composition
documents. One key element we wished to support was the use of informal sketches/diagrams which composers often
seem to use.

3 FrameWorks

3.1 The Workbench

Figure 3: A component editor.
By placing components on the framework a composer can build up the structure of a composition without necessarily
having written any musical material. Also, since components can be resized, the duration of specific material can be
changed very easily. Both of these properties aid in reducing premature commitment as described earlier.

While components in themselves allow some structure to be defined, one of the most important elements in music
composition are the relationships between materials occurring in different places, parts and/or times. In the
framework this is made possible through the use of relations. A component can be connected to another component
via a relation which establishes a dynamically maintained link between the material in the source component and that
of the target. The most basic relation is the identity. With this relation the target component always contains a copy of
the material in the source. Even during editing this relationship is maintained such that changing events in the source
immediately changes events in the target. More interesting relationships can be established using time, value,

useful analysis of the work since important relationships are explicitly set out in the component structure. These
documents could then be studied from a musicological point of view, where no doubt other relationships and musical
ideas could be elucidated. Figure 5 shows a framework under construction.

Figure 5: An example framework.

3.3 The Sequence

The sequence level allows the composer to view the resulting composition without explicitly indicating the structure
in terms of components and relations. As such it shows a flattened version of the piece similar to a typical MIDI
sequencer. Again this uses a kind of piano-roll style notation to indicate the musical material. Currently the sequence
display is very basic and needs some enhancement to give improved notation of the piece. While some editing
features remain, the sequence level does not allow the direct editing of the musical material, since this is dependent

Figure 6: An example sequence.

4 Musical Examples

In this section we demonstrate, using simple examples, some of the ways in which the framework area of the software
can be effective in exploring musical ideas.

4.1 A Basic Framework

This first example examines a very simple framework using just three components and two relations. Figure 7 shows
the framework with annotations to indicate the precise relationships between the components. All that happens here is
a simple phrase in the source component is extended by an octave transposition down and this transposed version is
then time reversed. Two tracks are used to clarify the organisation of the components, but they are simply arranged
successively in time.

Figure 7: A simple framework

The components can be placed anywhere in the framework without affecting the relationships between the material
within them. For example, the source component does not have to occur at the start but could equally well be placed
at the end or in the middle. Figure 8 shows the contents of the components, the source and the two dependent ones.

Figure 8: The components: (from left) source, octave down, (octave down and) time reversed.

Figure 11: Three alternative source components (in 12, 16 and 8 divisions).

Figure 12: Sequence from source 1.

Figure 13: Sequence from source 2.

Figure 14: Sequence from source 3.
5 Limitations

Several limitation of FrameWorks in its current form have been highlighted by our preliminary experiences of using
FrameWorks both as a composition tool and as an analysis tool (analysis by reworking existing pieces using the
framework structure, some results of which will published in a future paper). Some of these we were already aware of
since FrameWorks has yet to reach the level originally envisaged for the program. One clear hindrance is the lack of
hierarchical organisation. This often leads to multiple links having to be used where one group of components are
related to another group by the same relation. Because of this and for other reasons, it also leads to an over-complex
visualisation of the structure that could be simplified by looking at higher level relationships and super-components.
Another limitation, shown by the use of transpositions and inversions, is that FrameWorks is not aware of musical
keys. This means that often it is necessary to combine additional time-dependent transpositions to these relations in
order arrive at the correct musical result in tonal music. Adding specification of musical keys or modes to the
FrameWorks system would allow such corrections to be made automatically, although this would need to be able to
be overridden in some circumstances. Another problem is that time relations are not event aware, they simply ma-
nipulate time. Thus, relations such as retrograde, rather than time reversal, are difficult, although these can be
‘fudged’ by careful manipulation of event durations.

While there are such limitations with FrameWorks as it stands, it is interesting to use the software for both composi-
tion and analysis. An additional facility for adding text annotations to the framework would enhance the analysis use
of the program. As the system develops in sophistication it should improve in its usefulness both as a composition and
analysis environment.

5 Conclusions & Further Research

The main priorities for future development are: support for hierarchical arrangement of components; including other
MIDI data such as controllers; more sophisticated relations including event based relations and some form of
key/mode handling; improved notations, particularly for the sequence level; general improvements and bug fixes.
Although not intended as a true algorithmic composition system, it may be interesting to develop generation systems
that produce musical material for source components according to various processes and constraints.

Despite current limitations, we believe that FrameWorks provides an interesting environment for music composition
a

ns

References

Assayag, G. 1995. Visual Programming in Music. In Proceedings of the 1995 ICMC. pp. 73-6. ICMA.

Blackwell, A.F., Green, T.R.G. and Nunn, D.J.E. 2000 Cognitive Dimensions and Musical Notation Systems.
Workshop on Notation and Music Information Retrieval in the Computer Age. At the ICMC 2000.

Green, T.R.G. 1989. Cognitive dimensions of notations. In People and Computers V, Proceedings of the HCI '89
Conference. pp. 443-460 Eds. A Suttcliffe. and L. Macauley, CUP.

Johnson, P 1992. Human computer interaction: psychology, task analysis and software engineering. McGraw-Hill.

Polfreman, R. 1999. A task analysis of music composition and its application to the development of Modalyser.
Organised Sound, 4(1):31-43, CUP.

Polfreman, R. and Loomes, M.J. 2001. A TKS Framework for Understanding Music Composition Processes and its
Application in Interactive System Design. In Proceedings of the AISB’01 Symposium on Artificial Intelligence and
Creativity in Arts and Science. pp 75-83. The Society for the Study of Artificial Intelligence and the Simulation of
Behaviour.

	return:

